完成上面的步骤后,就开始train脚本的编写,新建train.py
在train.py导入
import json
import os
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim as optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
from timm.utils import accuracy, AverageMeter, ModelEma
from sklearn.metrics import classification_report
from timm.data.mixup import Mixup
from timm.loss import SoftTargetCrossEntropy
from models.emo import EMO_1M
from torch.autograd import Variable
from torchvision import datasets
torch.backends.cudnn.benchmark = False
import warnings
warnings.filterwarnings("ignore")
os.environ['CUDA_VISIBLE_DEVICES']="0,1"
os.environ['CUDA_VISIBLE_DEVICES']="0,1" 选择显卡,index从0开始,比如一台机器上有8块显卡,我们打算使用前两块显卡训练,设置为“0,1”,同理如果打算使用第三块和第六块显卡训练,则设置为“2,5”。
def seed_everything(seed=42):
os.environ['PYHTONHASHSEED'] = str(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
设置了固定的随机因子,再次训练的时候就可以保证图片的加载顺序不会发生变化。
if __name__ == '__main__':
#创建保存模型的文件夹
file_dir = 'checkpoints/emo/'
if os.path.exists(file_dir):
print('true')
os.makedirs(file_dir,exist_ok=True)
else:
os.makedirs(file_dir)
# 设置全局参数
model_lr = 1e-4
BATCH_SIZE = 16
EPOCHS = 300
DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
use_amp = True # 是否使用混合精度
use_dp = True #是否开启dp方式的多卡训练
classes = 12
resume =None
CLIP_GRAD = 5.0
Best_ACC = 0 #记录最高得分
use_ema=True
model_ema_decay=0.9998
start_epoch=1
seed=1
seed_everything(seed)
设置存放权重文件的文件夹,如果文件夹存在删除再建立。
接下来,设置全局参数,比如:学习率、BatchSize、epoch等参数,判断环境中是否存在GPU,如果没有则使用CPU。 注:建议使用GPU,CPU太慢了。
参数的详细解释:
model_lr:学习率,根据实际情况做调整。 BATCH_SIZE:batchsize,根据显卡的大小设置。 EPOCHS:epoch的个数,一般300够用。 use_amp:是否使用混合精度。 use_dp :是否开启dp方式的多卡训练? classes:类别个数。 resume:再次训练的模型路径,如果不为None,则表示加载resume指向的模型继续训练。 CLIP_GRAD:梯度的最大范数,在梯度裁剪里设置。 Best_ACC:记录最高ACC得分。 use_ema:是否使用ema start_epoch:开始的epoch,默认是1,如果重新训练时,需要给start_epoch重新赋值。 SEED:随机因子,数值可以随意设定,但是设置后,不要随意更改,更改后,图片加载的顺序会改变,影响测试结果。
file_dir = 'checkpoints/MobileViG'
这是存放seaformer模型的路径。
# 数据预处理7
transform = transforms.Compose([
transforms.RandomRotation(10),
transforms.GaussianBlur(kernel_size=(5,5),sigma=(0.1, 3.0)),
transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5),
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.3281186, 0.28937867, 0.20702125], std= [0.09407319, 0.09732835, 0.106712654])
])
transform_test = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.3281186, 0.28937867, 0.20702125], std= [0.09407319, 0.09732835, 0.106712654])
])
mixup_fn = Mixup(
mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None,
prob=0.1, switch_prob=0.5, mode='batch',
label_smoothing=0.1, num_classes=classes)
数据处理和增强比较简单,加入了随机10度的旋转、高斯模糊、色彩饱和度明亮度的变化、Mixup等比较常用的增强手段,做了Resize和归一化。
transforms.Normalize(mean=[0.3281186, 0.28937867, 0.20702125], std= [0.09407319, 0.09732835, 0.106712654])
这里设置为计算mean和std。 这里注意下Resize的大小,由于选用的CloFormer模型输入是224×224的大小,所以要Resize为224×224。
# 读取数据
dataset_train = datasets.ImageFolder('data/train', transform=transform)
dataset_test = datasets.ImageFolder("data/val", transform=transform_test)
with open('class.txt', 'w') as file:
file.write(str(dataset_train.class_to_idx))
with open('class.json', 'w', encoding='utf-8') as file:
file.write(json.dumps(dataset_train.class_to_idx))
# 导入数据
train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, pin_memory=True,shuffle=True,drop_last=True)
test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, pin_memory=True,shuffle=False)
class_to_idx的结果:
{'Black-grass': 0, 'Charlock': 1, 'Cleavers': 2, 'Common Chickweed': 3, 'Common wheat': 4, 'Fat Hen': 5, 'Loose Silky-bent': 6, 'Maize': 7, 'Scentless Mayweed': 8, 'Shepherds Purse': 9, 'Small-flowered Cranesbill': 10, 'Sugar beet': 11}
# 实例化模型并且移动到GPU
criterion_train = SoftTargetCrossEntropy()
criterion_val = torch.nn.CrossEntropyLoss()
设置loss函数,训练的loss为:SoftTargetCrossEntropy,验证的loss:nn.CrossEntropyLoss()。
#设置模型
model_ft = EMO_1M(pretrained=False)
model_ft.reset_classifier(classes)
# num_fr = model_ft.dist_head.in_channels
# model_ft.dist_head = nn.Conv2d(num_fr, classes, 1, bias=True)
print(model_ft)
if resume:
model=torch.load(resume)
print(model['state_dict'].keys())
model_ft.load_state_dict(model['state_dict'])
Best_ACC=model['Best_ACC']
start_epoch=model['epoch']+1
model_ft.to(DEVICE)
# 选择简单暴力的Adam优化器,学习率调低
optimizer = optim.AdamW(model_ft.parameters(),lr=model_lr)
cosine_schedule = optim.lr_scheduler.CosineAnnealingLR(optimizer=optimizer, T_max=20, eta_min=1e-6)
if use_amp:
scaler = torch.cuda.amp.GradScaler()
if torch.cuda.device_count() > 1 and use_dp:
print("Let's use", torch.cuda.device_count(), "GPUs!")
model_ft = torch.nn.DataParallel(model_ft)
if use_ema:
model_ema = ModelEma(
model_ft,
decay=model_ema_decay,
device=DEVICE,
resume=resume)
else:
model_ema=None
如果不开启混合精度则要将@autocast()去掉,否则loss一直试nan。
# 定义训练过程
def train(model, device, train_loader, optimizer, epoch,model_ema):
model.train()
loss_meter = AverageMeter()
acc1_meter = AverageMeter()
acc5_meter = AverageMeter()
total_num = len(train_loader.dataset)
print(total_num, len(train_loader))
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device, non_blocking=True), Variable(target).to(device, non_blocking=True)
samples, targets = mixup_fn(data, target)
output = model(samples)
optimizer.zero_grad()
if use_amp:
with torch.cuda.amp.autocast():
loss = torch.nan_to_num(criterion_train(output, targets))
scaler.scale(loss).backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD)
# Unscales gradients and calls
# or skips optimizer.step()
scaler.step(optimizer)
# Updates the scale for next iteration
scaler.update()
else:
loss = criterion_train(output, targets)
loss.backward()
# torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD)
optimizer.step()
if model_ema is not None:
model_ema.update(model)
torch.cuda.synchronize()
lr = optimizer.state_dict()['param_groups'][0]['lr']
loss_meter.update(loss.item(), target.size(0))
acc1, acc5 = accuracy(output, target, topk=(1, 5))
loss_meter.update(loss.item(), target.size(0))
acc1_meter.update(acc1.item(), target.size(0))
acc5_meter.update(acc5.item(), target.size(0))
if (batch_idx + 1) % 10 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tLR:{:.9f}'.format(
epoch, (batch_idx + 1) * len(data), len(train_loader.dataset),
100. * (batch_idx + 1) / len(train_loader), loss.item(), lr))
ave_loss =loss_meter.avg
acc = acc1_meter.avg
print('epoch:{}\tloss:{:.2f}\tacc:{:.2f}'.format(epoch, ave_loss, acc))
return ave_loss, acc
训练的主要步骤:
1、使用AverageMeter保存自定义变量,包括loss,ACC1,ACC5。 2、进入循环,将data和target放入device上,non_blocking设置为True。如果pin_memory=True的话,将数据放入GPU的时候,也应该把non_blocking打开,这样就只把数据放入GPU而不取出,访问时间会大大减少。 如果pin_memory=False时,则将non_blocking设置为False。 3、将数据输入mixup_fn生成mixup数据。 4、将第三部生成的mixup数据输入model,输出预测结果,然后再计算loss。 5、 optimizer.zero_grad() 梯度清零,把loss关于weight的导数变成0。 6、如果使用混合精度,则
否则,直接反向传播求梯度。torch.nn.utils.clip_grad_norm_函数执行梯度裁剪,防止梯度爆炸。 7、如果use_ema为True,则执行model_ema的updata函数,更新模型。 8、 torch.cuda.synchronize(),等待上面所有的操作执行完成。 9、接下来,更新loss,ACC1,ACC5的值。
等待一个epoch训练完成后,计算平均loss和平均acc
# 验证过程
@torch.no_grad()
def val(model, device, test_loader):
global Best_ACC
model.eval()
loss_meter = AverageMeter()
acc1_meter = AverageMeter()
acc5_meter = AverageMeter()
total_num = len(test_loader.dataset)
print(total_num, len(test_loader))
val_list = []
pred_list = []
for data, target in test_loader:
for t in target:
val_list.append(t.data.item())
data, target = data.to(device,non_blocking=True), target.to(device,non_blocking=True)
output = model(data)
loss = criterion_val(output, target)
_, pred = torch.max(output.data, 1)
for p in pred:
pred_list.append(p.data.item())
acc1, acc5 = accuracy(output, target, topk=(1, 5))
loss_meter.update(loss.item(), target.size(0))
acc1_meter.update(acc1.item(), target.size(0))
acc5_meter.update(acc5.item(), target.size(0))
acc = acc1_meter.avg
print('\nVal set: Average loss: {:.4f}\tAcc1:{:.3f}%\tAcc5:{:.3f}%\n'.format(
loss_meter.avg, acc, acc5_meter.avg))
if acc > Best_ACC:
if isinstance(model, torch.nn.DataParallel):
torch.save(model.module, file_dir + '/' + 'best.pth')
else:
torch.save(model, file_dir + '/' + 'best.pth')
Best_ACC = acc
if isinstance(model, torch.nn.DataParallel):
state = {
'epoch': epoch,
'state_dict': model.module.state_dict(),
'Best_ACC':Best_ACC
}
if use_ema:
state['state_dict_ema']=model.module.state_dict()
torch.save(state, file_dir + "/" + 'model_' + str(epoch) + '_' + str(round(acc, 3)) + '.pth')
else:
state = {
'epoch': epoch,
'state_dict': model.state_dict(),
'Best_ACC': Best_ACC
}
if use_ema:
state['state_dict_ema']=model.state_dict()
torch.save(state, file_dir + "/" + 'model_' + str(epoch) + '_' + str(round(acc, 3)) + '.pth')
return val_list, pred_list, loss_meter.avg, acc
验证集和训练集大致相似,主要步骤:
1、在val的函数上面添加@torch.no_grad(),作用:所有计算得出的tensor的requires_grad都自动设置为False。即使一个tensor(命名为x)的requires_grad = True,在with torch.no_grad计算,由x得到的新tensor(命名为w-标量)requires_grad也为False,且grad_fn也为None,即不会对w求导。 2、定义参数: loss_meter: 测试的loss acc1_meter:top1的ACC。 acc5_meter:top5的ACC。 total_num:总的验证集的数量。 val_list:验证集的label。 pred_list:预测的label。 3、进入循环,迭代test_loader:
将label保存到val_list。 将data和target放入device上,non_blocking设置为True。 将data输入到model中,求出预测值,然后输入到loss函数中,求出loss。 调用torch.max函数,将预测值转为对应的label。 将输出的预测值的label存入pred_list。 调用accuracy函数计算ACC1和ACC5 更新loss_meter、acc1_meter、acc5_meter的参数。
4、本次epoch循环完成后,求得本次epoch的acc、loss。 5、接下来是保存模型的逻辑 如果ACC比Best_ACC高,则保存best模型 判断模型是否为DP方式训练的模型。
如果是DP方式训练的模型,模型参数放在model.module,则需要保存model.module。 否则直接保存model。 注:保存best模型,我们采用保存整个模型的方式,这样保存的模型包含网络结构,在预测的时候,就不用再重新定义网络了。
6、接下来保存每个epoch的模型。 判断模型是否为DP方式训练的模型。
如果是DP方式训练的模型,模型参数放在model.module,则需要保存model.module.state_dict()。 新建个字典,放置Best_ACC、epoch和 model.module.state_dict()等参数。然后将这个字典保存。判断是否是使用EMA,如果使用,则还需要保存一份ema的权重。 否则,新建个字典,放置Best_ACC、epoch和 model.state_dict()等参数。然后将这个字典保存。判断是否是使用EMA,如果使用,则还需要保存一份ema的权重。
注意:对于每个epoch的模型只保存了state_dict参数,没有保存整个模型文件。
# 训练与验证
is_set_lr = False
log_dir = {}
train_loss_list, val_loss_list, train_acc_list, val_acc_list, epoch_list = [], [], [], [], []
if resume and os.path.isfile(file_dir+"result.json"):
with open(file_dir+'result.json', 'r', encoding='utf-8') as file:
logs = json.load(file)
train_acc_list = logs['train_acc']
train_loss_list = logs['train_loss']
val_acc_list = logs['val_acc']
val_loss_list = logs['val_loss']
epoch_list = logs['epoch_list']
for epoch in range(start_epoch, EPOCHS + 1):
epoch_list.append(epoch)
log_dir['epoch_list'] = epoch_list
train_loss, train_acc = train(model_ft, DEVICE, train_loader, optimizer, epoch,model_ema)
train_loss_list.append(train_loss)
train_acc_list.append(train_acc)
log_dir['train_acc'] = train_acc_list
log_dir['train_loss'] = train_loss_list
if use_ema:
val_list, pred_list, val_loss, val_acc = val(model_ema.ema, DEVICE, test_loader)
else:
val_list, pred_list, val_loss, val_acc = val(model_ft, DEVICE, test_loader)
val_loss_list.append(val_loss)
val_acc_list.append(val_acc)
log_dir['val_acc'] = val_acc_list
log_dir['val_loss'] = val_loss_list
log_dir['best_acc'] = Best_ACC
with open(file_dir + '/result.json', 'w', encoding='utf-8') as file:
file.write(json.dumps(log_dir))
print(classification_report(val_list, pred_list, target_names=dataset_train.class_to_idx))
if epoch < 600:
cosine_schedule.step()
else:
if not is_set_lr:
for param_group in optimizer.param_groups:
param_group["lr"] = 1e-6
is_set_lr = True
fig = plt.figure(1)
plt.plot(epoch_list, train_loss_list, 'r-', label=u'Train Loss')
# 显示图例
plt.plot(epoch_list, val_loss_list, 'b-', label=u'Val Loss')
plt.legend(["Train Loss", "Val Loss"], loc="upper right")
plt.xlabel(u'epoch')
plt.ylabel(u'loss')
plt.title('Model Loss ')
plt.savefig(file_dir + "/loss.png")
plt.close(1)
fig2 = plt.figure(2)
plt.plot(epoch_list, train_acc_list, 'r-', label=u'Train Acc')
plt.plot(epoch_list, val_acc_list, 'b-', label=u'Val Acc')
plt.legend(["Train Acc", "Val Acc"], loc="lower right")
plt.title("Model Acc")
plt.ylabel("acc")
plt.xlabel("epoch")
plt.savefig(file_dir + "/acc.png")
plt.close(2)
调用训练函数和验证函数的主要步骤:
1、定义参数:
如果是接着上次的断点继续训练则读取log文件,然后把log取出来,赋值到对应的list上。 循环epoch
1、调用train函数,得到 train_loss, train_acc,并将分别放入train_loss_list,train_acc_list,然后存入到logdir字典中。
2、调用验证函数,判断是否使用EMA? 如果使用EMA,则传入model_ema.ema,否则,传入model_ft。得到val_list, pred_list, val_loss, val_acc。将val_loss, val_acc分别放入val_loss_list和val_acc_list中,然后存入到logdir字典中。
3、保存log。
4、打印本次的测试报告。
5、如果epoch大于600,将学习率设置为固定的1e-6。
6、绘制loss曲线和acc曲线。
完成上面的所有代码就可以开始运行了。点击右键,然后选择“run train.py”即可,运行结果如下:
在每个epoch测试完成之后,打印验证集的acc、recall等指标。
EMO测试结果:
由于,预训练比较难下载,所以,我没有使用。但是,会带来一个问题,就是在使用EMA的时候,验证集不上分!这时候了,先将EMA设置为False,训练两个epoch。你会发现验证集的ACC上分了。
接下来,将resume设置为最后的epoch模型,将EMA设置为True就可以继续上分了。
测试,我们采用一种通用的方式。
测试集存放的目录如下图:
EMO_Demo
├─test
│ ├─1.jpg
│ ├─2.jpg
│ ├─3.jpg
│ ├ ......
└─test.py
import torch.utils.data.distributed
import torchvision.transforms as transforms
from PIL import Image
from torch.autograd import Variable
import os
classes = ('Black-grass', 'Charlock', 'Cleavers', 'Common Chickweed',
'Common wheat', 'Fat Hen', 'Loose Silky-bent',
'Maize', 'Scentless Mayweed', 'Shepherds Purse', 'Small-flowered Cranesbill', 'Sugar beet')
transform_test = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.44127703, 0.4712498, 0.43714803], std=[0.18507297, 0.18050247, 0.16784933])
])
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model=torch.load('checkpoints/emo/best.pth')
model.eval()
model.to(DEVICE)
path = 'test/'
testList = os.listdir(path)
for file in testList:
img = Image.open(path + file)
img = transform_test(img)
img.unsqueeze_(0)
img = Variable(img).to(DEVICE)
out = model(img)
# Predict
_, pred = torch.max(out.data, 1)
print('Image Name:{},predict:{}'.format(file, classes[pred.data.item()]))
测试的主要逻辑:
1、定义类别,这个类别的顺序和训练时的类别顺序对应,一定不要改变顺序!!!! 2、定义transforms,transforms和验证集的transforms一样即可,别做数据增强。 3、 加载model,switch_to_deploy函数,切换成推理模式,进一步提高运行速度,然后将模型放在DEVICE里, 4、循环 读取图片并预测图片的类别,在这里注意,读取图片用PIL库的Image。不要用cv2,transforms不支持。循环里面的主要逻辑:
运行结果:
新建脚本cam_image.py,插入如下代码:
import argparse
import os
import cv2
import numpy as np
import torch
from pytorch_grad_cam import GradCAM, \
ScoreCAM, \
GradCAMPlusPlus, \
AblationCAM, \
XGradCAM, \
EigenCAM, \
EigenGradCAM, \
LayerCAM, \
FullGrad
from pytorch_grad_cam.utils.image import show_cam_on_image, \
deprocess_image, \
preprocess_image
import timm
from torch.autograd import Variable
def reshape_transform_resmlp(tensor, height=14, width=14):
result = tensor.reshape(tensor.size(0),
height, width, tensor.size(2))
result = result.transpose(2, 3).transpose(1, 2)
return result
def reshape_transform_swin(tensor, height=7, width=7):
result = tensor.reshape(tensor.size(0),
height, width, tensor.size(2))
# Bring the channels to the first dimension,
# like in CNNs.
result = result.transpose(2, 3).transpose(1, 2)
return result
def reshape_transform_vit(tensor, height=14, width=14):
result = tensor[:, 1:, :].reshape(tensor.size(0),
height, width, tensor.size(2))
# Bring the channels to the first dimension,
# like in CNNs.
result = result.transpose(2, 3).transpose(1, 2)
return result
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--use-cuda', action='store_true', default=False,
help='Use NVIDIA GPU acceleration')
parser.add_argument(
'--image-path',
type=str,
default="./test/0bf7bfb05.png",
help='Input image path')
parser.add_argument(
'--output-image-path',
type=str,
default=None,
help='Output image path')
parser.add_argument(
'--models',
type=str,
default='emo',
help='models name')
parser.add_argument('--aug_smooth', action='store_true',
help='Apply test time augmentation to smooth the CAM')
parser.add_argument(
'--eigen_smooth',
action='store_true',
help='Reduce noise by taking the first principle componenet'
'of cam_weights*activations')
parser.add_argument('--method', type=str, default='gradcam++',
choices=['gradcam', 'gradcam++',
'scorecam', 'xgradcam',
'ablationcam', 'eigencam',
'eigengradcam', 'layercam', 'fullgrad'],
help='Can be gradcam/gradcam++/scorecam/xgradcam'
'/ablationcam/eigencam/eigengradcam/layercam')
args = parser.parse_args()
args.use_cuda = args.use_cuda and torch.cuda.is_available()
if args.use_cuda:
print('Using GPU for acceleration')
else:
print('Using CPU for computation')
return args
if __name__ == '__main__':
args = get_args()
methods = \
{"gradcam": GradCAM,
"scorecam": ScoreCAM,
"gradcam++": GradCAMPlusPlus,
"ablationcam": AblationCAM,
"xgradcam": XGradCAM,
"eigencam": EigenCAM,
"eigengradcam": EigenGradCAM,
"layercam": LayerCAM,
"fullgrad": FullGrad}
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = torch.load('checkpoints/emo/best.pth', map_location='cpu')
print(model)
reshape_transform = None
# print(models.stages[-1])
if 'emo' in args.models:
target_layers = [model.stage4[-1]]
print(target_layers)
model.eval()
model.to(DEVICE)
img_path = args.image_path
if args.image_path:
img_path = args.image_path
else:
import requests
image_url = 'http://146.48.86.29/edge-mac/imgs/n02123045/ILSVRC2012_val_00023779.JPEG'
img_path = image_url.split('/')[-1]
if os.path.exists(img_path):
img_data = requests.get(image_url).content
with open(img_path, 'wb') as handler:
handler.write(img_data)
if args.output_image_path:
save_name = args.output_image_path
else:
img_type = img_path.split('.')[-1]
it_len = len(img_type)
save_name = img_path.split('/')[-1][:-(it_len + 1)]
save_name = save_name + '_' + args.models + '.' + img_type
img = cv2.imread(img_path, 1)
img = cv2.resize(img, (224, 224), interpolation=cv2.INTER_AREA)
if args.models == 'resize':
cv2.imwrite(save_name, img)
else:
rgb_img = img[:, :, ::-1]
rgb_img = np.float32(rgb_img) / 255
input_tensor = Variable(preprocess_image(rgb_img,
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]), requires_grad=True).to(DEVICE)
targets = None
cam_algorithm = methods[args.method]
with cam_algorithm(model=model,
target_layers=target_layers,
use_cuda=args.use_cuda,
reshape_transform=reshape_transform,
) as cam:
cam.batch_size = 1
grayscale_cam = cam(input_tensor=input_tensor,
targets=targets,
aug_smooth=args.aug_smooth,
eigen_smooth=args.eigen_smooth)
grayscale_cam = grayscale_cam[0, :]
cam_image = show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True)
cam_image = cv2.cvtColor(cam_image, cv2.COLOR_RGB2BGR)
cv2.imwrite(save_name, cam_image)
对get_args函数的参数进行设置: - use-cuda:是否使用cuda,如果在没有GPU的电脑上调试时,将其设置为False。 - image-path:待测图片的路径,这个是必填项。 - model:必填项,默认值:mobilevig。 效果如下图所示: